Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
|- X = ran G |
2 |
|
abldiv.3 |
|- D = ( /g ` G ) |
3 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
4 |
|
simpl |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
5 |
1 2
|
grpodivcl |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X ) |
6 |
5
|
3adant3r3 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) e. X ) |
7 |
|
simpr3 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
8 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
9 |
1 8 2
|
grpodivval |
|- ( ( G e. GrpOp /\ ( A D B ) e. X /\ C e. X ) -> ( ( A D B ) D C ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
10 |
4 6 7 9
|
syl3anc |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
11 |
3 10
|
sylan |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
12 |
|
simpr1 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
13 |
|
simpr2 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
14 |
|
simp3 |
|- ( ( A e. X /\ B e. X /\ C e. X ) -> C e. X ) |
15 |
1 8
|
grpoinvcl |
|- ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
16 |
3 14 15
|
syl2an |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) |
17 |
12 13 16
|
3jca |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
18 |
1 2
|
ablodivdiv |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( A D ( B D ( ( inv ` G ) ` C ) ) ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
19 |
17 18
|
syldan |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D ( ( inv ` G ) ` C ) ) ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
20 |
1 8 2
|
grpodivinv |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D ( ( inv ` G ) ` C ) ) = ( B G C ) ) |
21 |
3 20
|
syl3an1 |
|- ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B D ( ( inv ` G ) ` C ) ) = ( B G C ) ) |
22 |
21
|
3adant3r1 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D ( ( inv ` G ) ` C ) ) = ( B G C ) ) |
23 |
22
|
oveq2d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D ( ( inv ` G ) ` C ) ) ) = ( A D ( B G C ) ) ) |
24 |
11 19 23
|
3eqtr2d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( A D ( B G C ) ) ) |