Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ran G = ran G |
|
2 | 1 | isablo | |- ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. ran G A. y e. ran G ( x G y ) = ( y G x ) ) ) |
3 | 2 | simplbi | |- ( G e. AbelOp -> G e. GrpOp ) |