Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
|- X = ran G |
2 |
|
abldiv.3 |
|- D = ( /g ` G ) |
3 |
1
|
ablocom |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) |
4 |
3
|
3adant3r3 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G B ) = ( B G A ) ) |
5 |
4
|
oveq1d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( B G A ) D C ) ) |
6 |
|
3ancoma |
|- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( B e. X /\ A e. X /\ C e. X ) ) |
7 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
8 |
1 2
|
grpomuldivass |
|- ( ( G e. GrpOp /\ ( B e. X /\ A e. X /\ C e. X ) ) -> ( ( B G A ) D C ) = ( B G ( A D C ) ) ) |
9 |
7 8
|
sylan |
|- ( ( G e. AbelOp /\ ( B e. X /\ A e. X /\ C e. X ) ) -> ( ( B G A ) D C ) = ( B G ( A D C ) ) ) |
10 |
6 9
|
sylan2b |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( B G A ) D C ) = ( B G ( A D C ) ) ) |
11 |
|
simpr2 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
12 |
1 2
|
grpodivcl |
|- ( ( G e. GrpOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
13 |
7 12
|
syl3an1 |
|- ( ( G e. AbelOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
14 |
13
|
3adant3r2 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) e. X ) |
15 |
11 14
|
jca |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B e. X /\ ( A D C ) e. X ) ) |
16 |
1
|
ablocom |
|- ( ( G e. AbelOp /\ B e. X /\ ( A D C ) e. X ) -> ( B G ( A D C ) ) = ( ( A D C ) G B ) ) |
17 |
16
|
3expb |
|- ( ( G e. AbelOp /\ ( B e. X /\ ( A D C ) e. X ) ) -> ( B G ( A D C ) ) = ( ( A D C ) G B ) ) |
18 |
15 17
|
syldan |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G ( A D C ) ) = ( ( A D C ) G B ) ) |
19 |
5 10 18
|
3eqtrd |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A D C ) G B ) ) |