| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 |  |-  X = ran G | 
						
							| 2 |  | abldiv.3 |  |-  D = ( /g ` G ) | 
						
							| 3 |  | id |  |-  ( ( A e. X /\ A e. X /\ B e. X ) -> ( A e. X /\ A e. X /\ B e. X ) ) | 
						
							| 4 | 3 | 3anidm12 |  |-  ( ( A e. X /\ B e. X ) -> ( A e. X /\ A e. X /\ B e. X ) ) | 
						
							| 5 | 1 2 | ablodivdiv |  |-  ( ( G e. AbelOp /\ ( A e. X /\ A e. X /\ B e. X ) ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) | 
						
							| 7 | 6 | 3impb |  |-  ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) | 
						
							| 8 |  | ablogrpo |  |-  ( G e. AbelOp -> G e. GrpOp ) | 
						
							| 9 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 10 | 1 2 9 | grpodivid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = ( GId ` G ) ) | 
						
							| 11 | 8 10 | sylan |  |-  ( ( G e. AbelOp /\ A e. X ) -> ( A D A ) = ( GId ` G ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D A ) = ( GId ` G ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( ( A D A ) G B ) = ( ( GId ` G ) G B ) ) | 
						
							| 14 | 1 9 | grpolid |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) | 
						
							| 15 | 8 14 | sylan |  |-  ( ( G e. AbelOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) | 
						
							| 17 | 7 13 16 | 3eqtrd |  |-  ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = B ) |