| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsubadd.b |
|- B = ( Base ` G ) |
| 2 |
|
ablsubadd.p |
|- .+ = ( +g ` G ) |
| 3 |
|
ablsubadd.m |
|- .- = ( -g ` G ) |
| 4 |
|
ablsubsub.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
ablsubsub.x |
|- ( ph -> X e. B ) |
| 6 |
|
ablsubsub.y |
|- ( ph -> Y e. B ) |
| 7 |
|
ablsubsub.z |
|- ( ph -> Z e. B ) |
| 8 |
|
ablpnpcan.g |
|- ( ph -> G e. Abel ) |
| 9 |
|
ablpnpcan.x |
|- ( ph -> X e. B ) |
| 10 |
|
ablpnpcan.y |
|- ( ph -> Y e. B ) |
| 11 |
|
ablpnpcan.z |
|- ( ph -> Z e. B ) |
| 12 |
1 2 3
|
ablsub4 |
|- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( X e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( ( X .- X ) .+ ( Y .- Z ) ) ) |
| 13 |
4 5 6 5 7 12
|
syl122anc |
|- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( ( X .- X ) .+ ( Y .- Z ) ) ) |
| 14 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 15 |
4 14
|
syl |
|- ( ph -> G e. Grp ) |
| 16 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 17 |
1 16 3
|
grpsubid |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
| 18 |
15 5 17
|
syl2anc |
|- ( ph -> ( X .- X ) = ( 0g ` G ) ) |
| 19 |
18
|
oveq1d |
|- ( ph -> ( ( X .- X ) .+ ( Y .- Z ) ) = ( ( 0g ` G ) .+ ( Y .- Z ) ) ) |
| 20 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
| 21 |
15 6 7 20
|
syl3anc |
|- ( ph -> ( Y .- Z ) e. B ) |
| 22 |
1 2 16
|
grplid |
|- ( ( G e. Grp /\ ( Y .- Z ) e. B ) -> ( ( 0g ` G ) .+ ( Y .- Z ) ) = ( Y .- Z ) ) |
| 23 |
15 21 22
|
syl2anc |
|- ( ph -> ( ( 0g ` G ) .+ ( Y .- Z ) ) = ( Y .- Z ) ) |
| 24 |
13 19 23
|
3eqtrd |
|- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( Y .- Z ) ) |