Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablprop.b | |- ( Base ` K ) = ( Base ` L ) |
|
ablprop.p | |- ( +g ` K ) = ( +g ` L ) |
||
Assertion | ablprop | |- ( K e. Abel <-> L e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablprop.b | |- ( Base ` K ) = ( Base ` L ) |
|
2 | ablprop.p | |- ( +g ` K ) = ( +g ` L ) |
|
3 | eqidd | |- ( T. -> ( Base ` K ) = ( Base ` K ) ) |
|
4 | 1 | a1i | |- ( T. -> ( Base ` K ) = ( Base ` L ) ) |
5 | 2 | oveqi | |- ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) |
6 | 5 | a1i | |- ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
7 | 3 4 6 | ablpropd | |- ( T. -> ( K e. Abel <-> L e. Abel ) ) |
8 | 7 | mptru | |- ( K e. Abel <-> L e. Abel ) |