Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablprop.b | |- ( Base ` K ) = ( Base ` L ) | |
| ablprop.p | |- ( +g ` K ) = ( +g ` L ) | ||
| Assertion | ablprop | |- ( K e. Abel <-> L e. Abel ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ablprop.b | |- ( Base ` K ) = ( Base ` L ) | |
| 2 | ablprop.p | |- ( +g ` K ) = ( +g ` L ) | |
| 3 | eqidd | |- ( T. -> ( Base ` K ) = ( Base ` K ) ) | |
| 4 | 1 | a1i | |- ( T. -> ( Base ` K ) = ( Base ` L ) ) | 
| 5 | 2 | oveqi | |- ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) | 
| 6 | 5 | a1i | |- ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
| 7 | 3 4 6 | ablpropd | |- ( T. -> ( K e. Abel <-> L e. Abel ) ) | 
| 8 | 7 | mptru | |- ( K e. Abel <-> L e. Abel ) |