| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablpropd.1 |  |-  ( ph -> B = ( Base ` K ) ) | 
						
							| 2 |  | ablpropd.2 |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 3 |  | ablpropd.3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 4 | 1 2 3 | grppropd |  |-  ( ph -> ( K e. Grp <-> L e. Grp ) ) | 
						
							| 5 | 1 2 3 | cmnpropd |  |-  ( ph -> ( K e. CMnd <-> L e. CMnd ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( ph -> ( ( K e. Grp /\ K e. CMnd ) <-> ( L e. Grp /\ L e. CMnd ) ) ) | 
						
							| 7 |  | isabl |  |-  ( K e. Abel <-> ( K e. Grp /\ K e. CMnd ) ) | 
						
							| 8 |  | isabl |  |-  ( L e. Abel <-> ( L e. Grp /\ L e. CMnd ) ) | 
						
							| 9 | 6 7 8 | 3bitr4g |  |-  ( ph -> ( K e. Abel <-> L e. Abel ) ) |