| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablnncan.b |
|- B = ( Base ` G ) |
| 2 |
|
ablnncan.m |
|- .- = ( -g ` G ) |
| 3 |
|
ablnncan.g |
|- ( ph -> G e. Abel ) |
| 4 |
|
ablnncan.x |
|- ( ph -> X e. B ) |
| 5 |
|
ablnncan.y |
|- ( ph -> Y e. B ) |
| 6 |
|
ablsub32.z |
|- ( ph -> Z e. B ) |
| 7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 8 |
1 7
|
ablcom |
|- ( ( G e. Abel /\ Y e. B /\ Z e. B ) -> ( Y ( +g ` G ) Z ) = ( Z ( +g ` G ) Y ) ) |
| 9 |
3 5 6 8
|
syl3anc |
|- ( ph -> ( Y ( +g ` G ) Z ) = ( Z ( +g ` G ) Y ) ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( X .- ( Y ( +g ` G ) Z ) ) = ( X .- ( Z ( +g ` G ) Y ) ) ) |
| 11 |
1 7 2 3 4 5 6
|
ablsubsub4 |
|- ( ph -> ( ( X .- Y ) .- Z ) = ( X .- ( Y ( +g ` G ) Z ) ) ) |
| 12 |
1 7 2 3 4 6 5
|
ablsubsub4 |
|- ( ph -> ( ( X .- Z ) .- Y ) = ( X .- ( Z ( +g ` G ) Y ) ) ) |
| 13 |
10 11 12
|
3eqtr4d |
|- ( ph -> ( ( X .- Y ) .- Z ) = ( ( X .- Z ) .- Y ) ) |