Metamath Proof Explorer


Theorem ablsubadd

Description: Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses ablsubadd.b
|- B = ( Base ` G )
ablsubadd.p
|- .+ = ( +g ` G )
ablsubadd.m
|- .- = ( -g ` G )
Assertion ablsubadd
|- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Y .+ Z ) = X ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b
 |-  B = ( Base ` G )
2 ablsubadd.p
 |-  .+ = ( +g ` G )
3 ablsubadd.m
 |-  .- = ( -g ` G )
4 ablgrp
 |-  ( G e. Abel -> G e. Grp )
5 1 2 3 grpsubadd
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Z .+ Y ) = X ) )
6 4 5 sylan
 |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Z .+ Y ) = X ) )
7 1 2 ablcom
 |-  ( ( G e. Abel /\ Y e. B /\ Z e. B ) -> ( Y .+ Z ) = ( Z .+ Y ) )
8 7 3adant3r1
 |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .+ Z ) = ( Z .+ Y ) )
9 8 eqeq1d
 |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .+ Z ) = X <-> ( Z .+ Y ) = X ) )
10 6 9 bitr4d
 |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Y .+ Z ) = X ) )