| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsubadd.b |
|- B = ( Base ` G ) |
| 2 |
|
ablsubadd.p |
|- .+ = ( +g ` G ) |
| 3 |
|
ablsubadd.m |
|- .- = ( -g ` G ) |
| 4 |
|
ablsubsub.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
ablsubsub.x |
|- ( ph -> X e. B ) |
| 6 |
|
ablsubsub.y |
|- ( ph -> Y e. B ) |
| 7 |
|
ablsubsub.z |
|- ( ph -> Z e. B ) |
| 8 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 9 |
4 8
|
syl |
|- ( ph -> G e. Grp ) |
| 10 |
1 2 3
|
grpsubsub |
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- ( Y .- Z ) ) = ( X .+ ( Z .- Y ) ) ) |
| 11 |
9 5 6 7 10
|
syl13anc |
|- ( ph -> ( X .- ( Y .- Z ) ) = ( X .+ ( Z .- Y ) ) ) |
| 12 |
1 2 3
|
grpaddsubass |
|- ( ( G e. Grp /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( X .+ ( Z .- Y ) ) ) |
| 13 |
9 5 7 6 12
|
syl13anc |
|- ( ph -> ( ( X .+ Z ) .- Y ) = ( X .+ ( Z .- Y ) ) ) |
| 14 |
1 2 3
|
abladdsub |
|- ( ( G e. Abel /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( ( X .- Y ) .+ Z ) ) |
| 15 |
4 5 7 6 14
|
syl13anc |
|- ( ph -> ( ( X .+ Z ) .- Y ) = ( ( X .- Y ) .+ Z ) ) |
| 16 |
11 13 15
|
3eqtr2d |
|- ( ph -> ( X .- ( Y .- Z ) ) = ( ( X .- Y ) .+ Z ) ) |