Metamath Proof Explorer


Theorem abn0

Description: Nonempty class abstraction. See also ab0 . (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024)

Ref Expression
Assertion abn0
|- ( { x | ph } =/= (/) <-> E. x ph )

Proof

Step Hyp Ref Expression
1 ab0
 |-  ( { x | ph } = (/) <-> A. x -. ph )
2 1 notbii
 |-  ( -. { x | ph } = (/) <-> -. A. x -. ph )
3 df-ne
 |-  ( { x | ph } =/= (/) <-> -. { x | ph } = (/) )
4 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
5 2 3 4 3bitr4i
 |-  ( { x | ph } =/= (/) <-> E. x ph )