Metamath Proof Explorer


Theorem abn0OLD

Description: Obsolete version of abn0 as of 30-Aug-2024. (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abn0OLD
|- ( { x | ph } =/= (/) <-> E. x ph )

Proof

Step Hyp Ref Expression
1 nfab1
 |-  F/_ x { x | ph }
2 1 n0f
 |-  ( { x | ph } =/= (/) <-> E. x x e. { x | ph } )
3 abid
 |-  ( x e. { x | ph } <-> ph )
4 3 exbii
 |-  ( E. x x e. { x | ph } <-> E. x ph )
5 2 4 bitri
 |-  ( { x | ph } =/= (/) <-> E. x ph )