Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abnotataxb.1 | |- -. ph |
|
| abnotataxb.2 | |- ps |
||
| Assertion | abnotataxb | |- ( ph \/_ ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnotataxb.1 | |- -. ph |
|
| 2 | abnotataxb.2 | |- ps |
|
| 3 | 2 1 | pm3.2i | |- ( ps /\ -. ph ) |
| 4 | 3 | olci | |- ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) |
| 5 | xor | |- ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |
|
| 6 | 4 5 | mpbir | |- -. ( ph <-> ps ) |
| 7 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
|
| 8 | 6 7 | mpbir | |- ( ph \/_ ps ) |