Metamath Proof Explorer


Theorem abnotataxb

Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotataxb.1
|- -. ph
abnotataxb.2
|- ps
Assertion abnotataxb
|- ( ph \/_ ps )

Proof

Step Hyp Ref Expression
1 abnotataxb.1
 |-  -. ph
2 abnotataxb.2
 |-  ps
3 2 1 pm3.2i
 |-  ( ps /\ -. ph )
4 3 olci
 |-  ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) )
5 xor
 |-  ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )
6 4 5 mpbir
 |-  -. ( ph <-> ps )
7 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
8 6 7 mpbir
 |-  ( ph \/_ ps )