Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abnotataxb.1 | |- -. ph |
|
abnotataxb.2 | |- ps |
||
Assertion | abnotataxb | |- ( ph \/_ ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnotataxb.1 | |- -. ph |
|
2 | abnotataxb.2 | |- ps |
|
3 | 2 1 | pm3.2i | |- ( ps /\ -. ph ) |
4 | 3 | olci | |- ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) |
5 | xor | |- ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |
|
6 | 4 5 | mpbir | |- -. ( ph <-> ps ) |
7 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
|
8 | 6 7 | mpbir | |- ( ph \/_ ps ) |