Metamath Proof Explorer


Theorem abnotbtaxb

Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotbtaxb.1
|- ph
abnotbtaxb.2
|- -. ps
Assertion abnotbtaxb
|- ( ph \/_ ps )

Proof

Step Hyp Ref Expression
1 abnotbtaxb.1
 |-  ph
2 abnotbtaxb.2
 |-  -. ps
3 xor3
 |-  ( -. ( ph <-> ps ) <-> ( ph <-> -. ps ) )
4 pm5.1
 |-  ( ( ph /\ -. ps ) -> ( ph <-> -. ps ) )
5 ibibr
 |-  ( ( ( ph /\ -. ps ) -> ( ph <-> -. ps ) ) <-> ( ( ph /\ -. ps ) -> ( ( ph <-> -. ps ) <-> ( ph /\ -. ps ) ) ) )
6 4 5 mpbi
 |-  ( ( ph /\ -. ps ) -> ( ( ph <-> -. ps ) <-> ( ph /\ -. ps ) ) )
7 1 2 6 mp2an
 |-  ( ( ph <-> -. ps ) <-> ( ph /\ -. ps ) )
8 3 7 bitri
 |-  ( -. ( ph <-> ps ) <-> ( ph /\ -. ps ) )
9 1 2 8 mpbir2an
 |-  -. ( ph <-> ps )
10 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
11 9 10 mpbir
 |-  ( ph \/_ ps )