Metamath Proof Explorer


Theorem abrexfi

Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014)

Ref Expression
Assertion abrexfi
|- ( A e. Fin -> { y | E. x e. A y = B } e. Fin )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
2 1 rnmpt
 |-  ran ( x e. A |-> B ) = { y | E. x e. A y = B }
3 mptfi
 |-  ( A e. Fin -> ( x e. A |-> B ) e. Fin )
4 rnfi
 |-  ( ( x e. A |-> B ) e. Fin -> ran ( x e. A |-> B ) e. Fin )
5 3 4 syl
 |-  ( A e. Fin -> ran ( x e. A |-> B ) e. Fin )
6 2 5 eqeltrrid
 |-  ( A e. Fin -> { y | E. x e. A y = B } e. Fin )