Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
2 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
3 |
1 2
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
4 |
|
oveq2 |
|- ( A = 0 -> ( x x. A ) = ( x x. 0 ) ) |
5 |
3 4
|
eqeq12d |
|- ( A = 0 -> ( ( abs ` A ) = ( x x. A ) <-> 0 = ( x x. 0 ) ) ) |
6 |
5
|
anbi2d |
|- ( A = 0 -> ( ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) <-> ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) ) |
7 |
6
|
rexbidv |
|- ( A = 0 -> ( E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) <-> E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) ) |
8 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
9 |
8
|
cjcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
10 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
11 |
10
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
12 |
11
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
13 |
|
abs00 |
|- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
14 |
13
|
necon3bid |
|- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
15 |
14
|
biimpar |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
16 |
9 12 15
|
divcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` A ) / ( abs ` A ) ) e. CC ) |
17 |
|
absdiv |
|- ( ( ( * ` A ) e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) -> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = ( ( abs ` ( * ` A ) ) / ( abs ` ( abs ` A ) ) ) ) |
18 |
9 12 15 17
|
syl3anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = ( ( abs ` ( * ` A ) ) / ( abs ` ( abs ` A ) ) ) ) |
19 |
|
abscj |
|- ( A e. CC -> ( abs ` ( * ` A ) ) = ( abs ` A ) ) |
20 |
19
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( * ` A ) ) = ( abs ` A ) ) |
21 |
|
absidm |
|- ( A e. CC -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
22 |
21
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
23 |
20 22
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( * ` A ) ) / ( abs ` ( abs ` A ) ) ) = ( ( abs ` A ) / ( abs ` A ) ) ) |
24 |
12 15
|
dividd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) / ( abs ` A ) ) = 1 ) |
25 |
18 23 24
|
3eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 ) |
26 |
8 9 12 15
|
divassd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( A x. ( ( * ` A ) / ( abs ` A ) ) ) ) |
27 |
12
|
sqvald |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
28 |
|
absvalsq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
29 |
28
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
30 |
27 29
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) x. ( abs ` A ) ) = ( A x. ( * ` A ) ) ) |
31 |
12 12 15 30
|
mvllmuld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) = ( ( A x. ( * ` A ) ) / ( abs ` A ) ) ) |
32 |
16 8
|
mulcomd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` A ) / ( abs ` A ) ) x. A ) = ( A x. ( ( * ` A ) / ( abs ` A ) ) ) ) |
33 |
26 31 32
|
3eqtr4d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) |
34 |
|
fveqeq2 |
|- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( ( abs ` x ) = 1 <-> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 ) ) |
35 |
|
oveq1 |
|- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( x x. A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) |
36 |
35
|
eqeq2d |
|- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( ( abs ` A ) = ( x x. A ) <-> ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) ) |
37 |
34 36
|
anbi12d |
|- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) <-> ( ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 /\ ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) ) ) |
38 |
37
|
rspcev |
|- ( ( ( ( * ` A ) / ( abs ` A ) ) e. CC /\ ( ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 /\ ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) ) -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |
39 |
16 25 33 38
|
syl12anc |
|- ( ( A e. CC /\ A =/= 0 ) -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |
40 |
|
ax-icn |
|- _i e. CC |
41 |
|
absi |
|- ( abs ` _i ) = 1 |
42 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
43 |
42
|
eqcomi |
|- 0 = ( _i x. 0 ) |
44 |
41 43
|
pm3.2i |
|- ( ( abs ` _i ) = 1 /\ 0 = ( _i x. 0 ) ) |
45 |
|
fveqeq2 |
|- ( x = _i -> ( ( abs ` x ) = 1 <-> ( abs ` _i ) = 1 ) ) |
46 |
|
oveq1 |
|- ( x = _i -> ( x x. 0 ) = ( _i x. 0 ) ) |
47 |
46
|
eqeq2d |
|- ( x = _i -> ( 0 = ( x x. 0 ) <-> 0 = ( _i x. 0 ) ) ) |
48 |
45 47
|
anbi12d |
|- ( x = _i -> ( ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) <-> ( ( abs ` _i ) = 1 /\ 0 = ( _i x. 0 ) ) ) ) |
49 |
48
|
rspcev |
|- ( ( _i e. CC /\ ( ( abs ` _i ) = 1 /\ 0 = ( _i x. 0 ) ) ) -> E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) |
50 |
40 44 49
|
mp2an |
|- E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) |
51 |
50
|
a1i |
|- ( A e. CC -> E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) |
52 |
7 39 51
|
pm2.61ne |
|- ( A e. CC -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |