Metamath Proof Explorer


Theorem abs2dif

Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion abs2dif
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) )

Proof

Step Hyp Ref Expression
1 subid1
 |-  ( A e. CC -> ( A - 0 ) = A )
2 1 fveq2d
 |-  ( A e. CC -> ( abs ` ( A - 0 ) ) = ( abs ` A ) )
3 subid1
 |-  ( B e. CC -> ( B - 0 ) = B )
4 3 fveq2d
 |-  ( B e. CC -> ( abs ` ( B - 0 ) ) = ( abs ` B ) )
5 2 4 oveqan12d
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) = ( ( abs ` A ) - ( abs ` B ) ) )
6 0cn
 |-  0 e. CC
7 abs3dif
 |-  ( ( A e. CC /\ 0 e. CC /\ B e. CC ) -> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) )
8 6 7 mp3an2
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) )
9 subcl
 |-  ( ( A e. CC /\ 0 e. CC ) -> ( A - 0 ) e. CC )
10 6 9 mpan2
 |-  ( A e. CC -> ( A - 0 ) e. CC )
11 abscl
 |-  ( ( A - 0 ) e. CC -> ( abs ` ( A - 0 ) ) e. RR )
12 10 11 syl
 |-  ( A e. CC -> ( abs ` ( A - 0 ) ) e. RR )
13 subcl
 |-  ( ( B e. CC /\ 0 e. CC ) -> ( B - 0 ) e. CC )
14 6 13 mpan2
 |-  ( B e. CC -> ( B - 0 ) e. CC )
15 abscl
 |-  ( ( B - 0 ) e. CC -> ( abs ` ( B - 0 ) ) e. RR )
16 14 15 syl
 |-  ( B e. CC -> ( abs ` ( B - 0 ) ) e. RR )
17 12 16 anim12i
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR ) )
18 subcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )
19 abscl
 |-  ( ( A - B ) e. CC -> ( abs ` ( A - B ) ) e. RR )
20 18 19 syl
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) e. RR )
21 df-3an
 |-  ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) <-> ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR ) /\ ( abs ` ( A - B ) ) e. RR ) )
22 17 20 21 sylanbrc
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) )
23 lesubadd
 |-  ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) -> ( ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) <-> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) )
24 22 23 syl
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) <-> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) )
25 8 24 mpbird
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) )
26 5 25 eqbrtrrd
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) )