Step |
Hyp |
Ref |
Expression |
1 |
|
subid1 |
|- ( A e. CC -> ( A - 0 ) = A ) |
2 |
1
|
fveq2d |
|- ( A e. CC -> ( abs ` ( A - 0 ) ) = ( abs ` A ) ) |
3 |
|
subid1 |
|- ( B e. CC -> ( B - 0 ) = B ) |
4 |
3
|
fveq2d |
|- ( B e. CC -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
5 |
2 4
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) = ( ( abs ` A ) - ( abs ` B ) ) ) |
6 |
|
0cn |
|- 0 e. CC |
7 |
|
abs3dif |
|- ( ( A e. CC /\ 0 e. CC /\ B e. CC ) -> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) |
8 |
6 7
|
mp3an2 |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) |
9 |
|
subcl |
|- ( ( A e. CC /\ 0 e. CC ) -> ( A - 0 ) e. CC ) |
10 |
6 9
|
mpan2 |
|- ( A e. CC -> ( A - 0 ) e. CC ) |
11 |
|
abscl |
|- ( ( A - 0 ) e. CC -> ( abs ` ( A - 0 ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( A e. CC -> ( abs ` ( A - 0 ) ) e. RR ) |
13 |
|
subcl |
|- ( ( B e. CC /\ 0 e. CC ) -> ( B - 0 ) e. CC ) |
14 |
6 13
|
mpan2 |
|- ( B e. CC -> ( B - 0 ) e. CC ) |
15 |
|
abscl |
|- ( ( B - 0 ) e. CC -> ( abs ` ( B - 0 ) ) e. RR ) |
16 |
14 15
|
syl |
|- ( B e. CC -> ( abs ` ( B - 0 ) ) e. RR ) |
17 |
12 16
|
anim12i |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR ) ) |
18 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
19 |
|
abscl |
|- ( ( A - B ) e. CC -> ( abs ` ( A - B ) ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) e. RR ) |
21 |
|
df-3an |
|- ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) <-> ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR ) /\ ( abs ` ( A - B ) ) e. RR ) ) |
22 |
17 20 21
|
sylanbrc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) ) |
23 |
|
lesubadd |
|- ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) -> ( ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) <-> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) ) |
24 |
22 23
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) <-> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) ) |
25 |
8 24
|
mpbird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) ) |
26 |
5 25
|
eqbrtrrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) |