Step |
Hyp |
Ref |
Expression |
1 |
|
absvalsqi.1 |
|- A e. CC |
2 |
|
abssub.2 |
|- B e. CC |
3 |
|
abs3dif.3 |
|- C e. CC |
4 |
|
abs3lem.4 |
|- D e. RR |
5 |
1 2 3
|
abs3difi |
|- ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) |
6 |
1 3
|
subcli |
|- ( A - C ) e. CC |
7 |
6
|
abscli |
|- ( abs ` ( A - C ) ) e. RR |
8 |
3 2
|
subcli |
|- ( C - B ) e. CC |
9 |
8
|
abscli |
|- ( abs ` ( C - B ) ) e. RR |
10 |
4
|
rehalfcli |
|- ( D / 2 ) e. RR |
11 |
7 9 10 10
|
lt2addi |
|- ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) |
12 |
1 2
|
subcli |
|- ( A - B ) e. CC |
13 |
12
|
abscli |
|- ( abs ` ( A - B ) ) e. RR |
14 |
7 9
|
readdcli |
|- ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) e. RR |
15 |
10 10
|
readdcli |
|- ( ( D / 2 ) + ( D / 2 ) ) e. RR |
16 |
13 14 15
|
lelttri |
|- ( ( ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) /\ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) |
17 |
5 11 16
|
sylancr |
|- ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) |
18 |
10
|
recni |
|- ( D / 2 ) e. CC |
19 |
18
|
2timesi |
|- ( 2 x. ( D / 2 ) ) = ( ( D / 2 ) + ( D / 2 ) ) |
20 |
4
|
recni |
|- D e. CC |
21 |
|
2cn |
|- 2 e. CC |
22 |
|
2ne0 |
|- 2 =/= 0 |
23 |
20 21 22
|
divcan2i |
|- ( 2 x. ( D / 2 ) ) = D |
24 |
19 23
|
eqtr3i |
|- ( ( D / 2 ) + ( D / 2 ) ) = D |
25 |
17 24
|
breqtrdi |
|- ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D ) |