| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							absvalsqi.1 | 
							 |-  A e. CC  | 
						
						
							| 2 | 
							
								
							 | 
							abssub.2 | 
							 |-  B e. CC  | 
						
						
							| 3 | 
							
								
							 | 
							abs3dif.3 | 
							 |-  C e. CC  | 
						
						
							| 4 | 
							
								
							 | 
							abs3lem.4 | 
							 |-  D e. RR  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							abs3difi | 
							 |-  ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) )  | 
						
						
							| 6 | 
							
								1 3
							 | 
							subcli | 
							 |-  ( A - C ) e. CC  | 
						
						
							| 7 | 
							
								6
							 | 
							abscli | 
							 |-  ( abs ` ( A - C ) ) e. RR  | 
						
						
							| 8 | 
							
								3 2
							 | 
							subcli | 
							 |-  ( C - B ) e. CC  | 
						
						
							| 9 | 
							
								8
							 | 
							abscli | 
							 |-  ( abs ` ( C - B ) ) e. RR  | 
						
						
							| 10 | 
							
								4
							 | 
							rehalfcli | 
							 |-  ( D / 2 ) e. RR  | 
						
						
							| 11 | 
							
								7 9 10 10
							 | 
							lt2addi | 
							 |-  ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) )  | 
						
						
							| 12 | 
							
								1 2
							 | 
							subcli | 
							 |-  ( A - B ) e. CC  | 
						
						
							| 13 | 
							
								12
							 | 
							abscli | 
							 |-  ( abs ` ( A - B ) ) e. RR  | 
						
						
							| 14 | 
							
								7 9
							 | 
							readdcli | 
							 |-  ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) e. RR  | 
						
						
							| 15 | 
							
								10 10
							 | 
							readdcli | 
							 |-  ( ( D / 2 ) + ( D / 2 ) ) e. RR  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							lelttri | 
							 |-  ( ( ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) /\ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) < ( ( D / 2 ) + ( D / 2 ) ) )  | 
						
						
							| 17 | 
							
								5 11 16
							 | 
							sylancr | 
							 |-  ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < ( ( D / 2 ) + ( D / 2 ) ) )  | 
						
						
							| 18 | 
							
								10
							 | 
							recni | 
							 |-  ( D / 2 ) e. CC  | 
						
						
							| 19 | 
							
								18
							 | 
							2timesi | 
							 |-  ( 2 x. ( D / 2 ) ) = ( ( D / 2 ) + ( D / 2 ) )  | 
						
						
							| 20 | 
							
								4
							 | 
							recni | 
							 |-  D e. CC  | 
						
						
							| 21 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 22 | 
							
								
							 | 
							2ne0 | 
							 |-  2 =/= 0  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							divcan2i | 
							 |-  ( 2 x. ( D / 2 ) ) = D  | 
						
						
							| 24 | 
							
								19 23
							 | 
							eqtr3i | 
							 |-  ( ( D / 2 ) + ( D / 2 ) ) = D  | 
						
						
							| 25 | 
							
								17 24
							 | 
							breqtrdi | 
							 |-  ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D )  |