Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|- ( T. -> ( AbsVal ` CCfld ) = ( AbsVal ` CCfld ) ) |
2 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
3 |
2
|
a1i |
|- ( T. -> CC = ( Base ` CCfld ) ) |
4 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
5 |
4
|
a1i |
|- ( T. -> + = ( +g ` CCfld ) ) |
6 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
7 |
6
|
a1i |
|- ( T. -> x. = ( .r ` CCfld ) ) |
8 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
9 |
8
|
a1i |
|- ( T. -> 0 = ( 0g ` CCfld ) ) |
10 |
|
cnring |
|- CCfld e. Ring |
11 |
10
|
a1i |
|- ( T. -> CCfld e. Ring ) |
12 |
|
absf |
|- abs : CC --> RR |
13 |
12
|
a1i |
|- ( T. -> abs : CC --> RR ) |
14 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
15 |
14
|
a1i |
|- ( T. -> ( abs ` 0 ) = 0 ) |
16 |
|
absgt0 |
|- ( x e. CC -> ( x =/= 0 <-> 0 < ( abs ` x ) ) ) |
17 |
16
|
biimpa |
|- ( ( x e. CC /\ x =/= 0 ) -> 0 < ( abs ` x ) ) |
18 |
17
|
3adant1 |
|- ( ( T. /\ x e. CC /\ x =/= 0 ) -> 0 < ( abs ` x ) ) |
19 |
|
absmul |
|- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
20 |
19
|
ad2ant2r |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
21 |
20
|
3adant1 |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
22 |
|
abstri |
|- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
23 |
22
|
ad2ant2r |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
24 |
23
|
3adant1 |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
25 |
1 3 5 7 9 11 13 15 18 21 24
|
isabvd |
|- ( T. -> abs e. ( AbsVal ` CCfld ) ) |
26 |
25
|
mptru |
|- abs e. ( AbsVal ` CCfld ) |