| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd |  |-  ( T. -> ( AbsVal ` CCfld ) = ( AbsVal ` CCfld ) ) | 
						
							| 2 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 3 | 2 | a1i |  |-  ( T. -> CC = ( Base ` CCfld ) ) | 
						
							| 4 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 5 | 4 | a1i |  |-  ( T. -> + = ( +g ` CCfld ) ) | 
						
							| 6 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 7 | 6 | a1i |  |-  ( T. -> x. = ( .r ` CCfld ) ) | 
						
							| 8 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 9 | 8 | a1i |  |-  ( T. -> 0 = ( 0g ` CCfld ) ) | 
						
							| 10 |  | cnring |  |-  CCfld e. Ring | 
						
							| 11 | 10 | a1i |  |-  ( T. -> CCfld e. Ring ) | 
						
							| 12 |  | absf |  |-  abs : CC --> RR | 
						
							| 13 | 12 | a1i |  |-  ( T. -> abs : CC --> RR ) | 
						
							| 14 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 15 | 14 | a1i |  |-  ( T. -> ( abs ` 0 ) = 0 ) | 
						
							| 16 |  | absgt0 |  |-  ( x e. CC -> ( x =/= 0 <-> 0 < ( abs ` x ) ) ) | 
						
							| 17 | 16 | biimpa |  |-  ( ( x e. CC /\ x =/= 0 ) -> 0 < ( abs ` x ) ) | 
						
							| 18 | 17 | 3adant1 |  |-  ( ( T. /\ x e. CC /\ x =/= 0 ) -> 0 < ( abs ` x ) ) | 
						
							| 19 |  | absmul |  |-  ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) | 
						
							| 20 | 19 | ad2ant2r |  |-  ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) | 
						
							| 21 | 20 | 3adant1 |  |-  ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) | 
						
							| 22 |  | abstri |  |-  ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) | 
						
							| 23 | 22 | ad2ant2r |  |-  ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) | 
						
							| 24 | 23 | 3adant1 |  |-  ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) | 
						
							| 25 | 1 3 5 7 9 11 13 15 18 21 24 | isabvd |  |-  ( T. -> abs e. ( AbsVal ` CCfld ) ) | 
						
							| 26 | 25 | mptru |  |-  abs e. ( AbsVal ` CCfld ) |