Metamath Proof Explorer


Theorem abscl

Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999)

Ref Expression
Assertion abscl
|- ( A e. CC -> ( abs ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 absval
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
2 cjmulrcl
 |-  ( A e. CC -> ( A x. ( * ` A ) ) e. RR )
3 cjmulge0
 |-  ( A e. CC -> 0 <_ ( A x. ( * ` A ) ) )
4 resqrtcl
 |-  ( ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR )
5 2 3 4 syl2anc
 |-  ( A e. CC -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR )
6 1 5 eqeltrd
 |-  ( A e. CC -> ( abs ` A ) e. RR )