Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
2 | cjmulrcl | |- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |
|
3 | cjmulge0 | |- ( A e. CC -> 0 <_ ( A x. ( * ` A ) ) ) |
|
4 | resqrtcl | |- ( ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR ) |
|
5 | 2 3 4 | syl2anc | |- ( A e. CC -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR ) |
6 | 1 5 | eqeltrd | |- ( A e. CC -> ( abs ` A ) e. RR ) |