Metamath Proof Explorer


Theorem abscn2

Description: The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion abscn2
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( abs ` z ) - ( abs ` A ) ) ) < x ) )

Proof

Step Hyp Ref Expression
1 absf
 |-  abs : CC --> RR
2 ax-resscn
 |-  RR C_ CC
3 fss
 |-  ( ( abs : CC --> RR /\ RR C_ CC ) -> abs : CC --> CC )
4 1 2 3 mp2an
 |-  abs : CC --> CC
5 abs2difabs
 |-  ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( abs ` z ) - ( abs ` A ) ) ) <_ ( abs ` ( z - A ) ) )
6 4 5 cn1lem
 |-  ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( abs ` z ) - ( abs ` A ) ) ) < x ) )