| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 2 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 3 | 1 2 | abscn |  |-  abs e. ( ( TopOpen ` CCfld ) Cn ( topGen ` ran (,) ) ) | 
						
							| 4 |  | ssid |  |-  CC C_ CC | 
						
							| 5 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 6 | 1 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 7 | 6 | toponunii |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 8 | 7 | restid |  |-  ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) | 
						
							| 9 | 6 8 | ax-mp |  |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) | 
						
							| 10 | 9 | eqcomi |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 11 | 1 | tgioo2 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 12 | 1 10 11 | cncfcn |  |-  ( ( CC C_ CC /\ RR C_ CC ) -> ( CC -cn-> RR ) = ( ( TopOpen ` CCfld ) Cn ( topGen ` ran (,) ) ) ) | 
						
							| 13 | 4 5 12 | mp2an |  |-  ( CC -cn-> RR ) = ( ( TopOpen ` CCfld ) Cn ( topGen ` ran (,) ) ) | 
						
							| 14 | 3 13 | eleqtrri |  |-  abs e. ( CC -cn-> RR ) |