Metamath Proof Explorer


Theorem abscosbd

Description: Bound for the absolute value of the cosine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion abscosbd
|- ( A e. RR -> ( abs ` ( cos ` A ) ) <_ 1 )

Proof

Step Hyp Ref Expression
1 cosbnd
 |-  ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) )
2 recoscl
 |-  ( A e. RR -> ( cos ` A ) e. RR )
3 1red
 |-  ( A e. RR -> 1 e. RR )
4 2 3 absled
 |-  ( A e. RR -> ( ( abs ` ( cos ` A ) ) <_ 1 <-> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) )
5 1 4 mpbird
 |-  ( A e. RR -> ( abs ` ( cos ` A ) ) <_ 1 )