| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abscvgcvg.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
abscvgcvg.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
abscvgcvg.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( abs ` ( G ` k ) ) ) |
| 4 |
|
abscvgcvg.4 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 5 |
|
abscvgcvg.5 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 6 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 8 |
7 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
| 9 |
4
|
abscld |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) e. RR ) |
| 10 |
3 9
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 11 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 12 |
1
|
eleq2i |
|- ( k e. Z <-> k e. ( ZZ>= ` M ) ) |
| 13 |
3
|
eqcomd |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) = ( F ` k ) ) |
| 14 |
9 13
|
eqled |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) <_ ( F ` k ) ) |
| 15 |
10
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 16 |
15
|
mullidd |
|- ( ( ph /\ k e. Z ) -> ( 1 x. ( F ` k ) ) = ( F ` k ) ) |
| 17 |
14 16
|
breqtrrd |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) <_ ( 1 x. ( F ` k ) ) ) |
| 18 |
12 17
|
sylan2br |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( G ` k ) ) <_ ( 1 x. ( F ` k ) ) ) |
| 19 |
1 8 10 4 5 11 18
|
cvgcmpce |
|- ( ph -> seq M ( + , G ) e. dom ~~> ) |