| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. RR+ /\ B e. CC ) -> B e. CC ) |
| 2 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 3 |
2
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 4 |
3
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> ( log ` A ) e. CC ) |
| 5 |
1 4
|
mulcld |
|- ( ( A e. RR+ /\ B e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
| 6 |
|
absef |
|- ( ( B x. ( log ` A ) ) e. CC -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
| 7 |
5 6
|
syl |
|- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
| 8 |
|
remul2 |
|- ( ( ( log ` A ) e. RR /\ B e. CC ) -> ( Re ` ( ( log ` A ) x. B ) ) = ( ( log ` A ) x. ( Re ` B ) ) ) |
| 9 |
2 8
|
sylan |
|- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` ( ( log ` A ) x. B ) ) = ( ( log ` A ) x. ( Re ` B ) ) ) |
| 10 |
1 4
|
mulcomd |
|- ( ( A e. RR+ /\ B e. CC ) -> ( B x. ( log ` A ) ) = ( ( log ` A ) x. B ) ) |
| 11 |
10
|
fveq2d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( Re ` ( ( log ` A ) x. B ) ) ) |
| 12 |
|
recl |
|- ( B e. CC -> ( Re ` B ) e. RR ) |
| 13 |
12
|
adantl |
|- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` B ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` B ) e. CC ) |
| 15 |
14 4
|
mulcomd |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( Re ` B ) x. ( log ` A ) ) = ( ( log ` A ) x. ( Re ` B ) ) ) |
| 16 |
9 11 15
|
3eqtr4d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( ( Re ` B ) x. ( log ` A ) ) ) |
| 17 |
16
|
fveq2d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 18 |
7 17
|
eqtrd |
|- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 19 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
| 20 |
19
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> A e. CC ) |
| 21 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
| 22 |
21
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> A =/= 0 ) |
| 23 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 24 |
20 22 1 23
|
syl3anc |
|- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 25 |
24
|
fveq2d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 26 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ ( Re ` B ) e. CC ) -> ( A ^c ( Re ` B ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 27 |
20 22 14 26
|
syl3anc |
|- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c ( Re ` B ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 28 |
18 25 27
|
3eqtr4d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( A ^c B ) ) = ( A ^c ( Re ` B ) ) ) |