| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 e. RR ) | 
						
							| 2 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 3 | 2 | a1i |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 <_ 0 ) | 
						
							| 4 |  | simplr |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> B e. RR ) | 
						
							| 5 |  | recxpcl |  |-  ( ( 0 e. RR /\ 0 <_ 0 /\ B e. RR ) -> ( 0 ^c B ) e. RR ) | 
						
							| 6 | 1 3 4 5 | syl3anc |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( 0 ^c B ) e. RR ) | 
						
							| 7 |  | cxpge0 |  |-  ( ( 0 e. RR /\ 0 <_ 0 /\ B e. RR ) -> 0 <_ ( 0 ^c B ) ) | 
						
							| 8 | 1 3 4 7 | syl3anc |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 <_ ( 0 ^c B ) ) | 
						
							| 9 | 6 8 | absidd |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( 0 ^c B ) ) = ( 0 ^c B ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> A = 0 ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( A ^c B ) = ( 0 ^c B ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( 0 ^c B ) ) ) | 
						
							| 13 | 10 | abs00bd |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` A ) = 0 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( ( abs ` A ) ^c B ) = ( 0 ^c B ) ) | 
						
							| 15 | 9 12 14 | 3eqtr4d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) | 
						
							| 16 |  | simplr |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> B e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> B e. CC ) | 
						
							| 18 |  | logcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 19 | 18 | adantlr |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 20 | 17 19 | mulcld |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( log ` A ) ) e. CC ) | 
						
							| 21 |  | absef |  |-  ( ( B x. ( log ` A ) ) e. CC -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) | 
						
							| 23 | 16 19 | remul2d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( B x. ( Re ` ( log ` A ) ) ) ) | 
						
							| 24 |  | relog |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) | 
						
							| 25 | 24 | adantlr |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( Re ` ( log ` A ) ) ) = ( B x. ( log ` ( abs ` A ) ) ) ) | 
						
							| 27 | 23 26 | eqtrd |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( B x. ( log ` ( abs ` A ) ) ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) | 
						
							| 29 | 22 28 | eqtrd |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) | 
						
							| 30 |  | simpll |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> A e. CC ) | 
						
							| 31 |  | simpr |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> A =/= 0 ) | 
						
							| 32 |  | cxpef |  |-  ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) | 
						
							| 33 | 30 31 17 32 | syl3anc |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) ) | 
						
							| 35 | 30 | abscld |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) | 
						
							| 37 |  | abs00 |  |-  ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( A e. CC /\ B e. RR ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) | 
						
							| 39 | 38 | necon3bid |  |-  ( ( A e. CC /\ B e. RR ) -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) | 
						
							| 40 | 39 | biimpar |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) | 
						
							| 41 |  | cxpef |  |-  ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 /\ B e. CC ) -> ( ( abs ` A ) ^c B ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) | 
						
							| 42 | 36 40 17 41 | syl3anc |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( ( abs ` A ) ^c B ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) | 
						
							| 43 | 29 34 42 | 3eqtr4d |  |-  ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) | 
						
							| 44 | 15 43 | pm2.61dane |  |-  ( ( A e. CC /\ B e. RR ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |