Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | absltd.1 | |- ( ph -> A e. RR ) |
|
absltd.2 | |- ( ph -> B e. RR ) |
||
absltd.3 | |- ( ph -> C e. RR ) |
||
Assertion | absdifled | |- ( ph -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absltd.1 | |- ( ph -> A e. RR ) |
|
2 | absltd.2 | |- ( ph -> B e. RR ) |
|
3 | absltd.3 | |- ( ph -> C e. RR ) |
|
4 | absdifle | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |