Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absltd.1 | |- ( ph -> A e. RR ) | |
| absltd.2 | |- ( ph -> B e. RR ) | ||
| absltd.3 | |- ( ph -> C e. RR ) | ||
| Assertion | absdifled | |- ( ph -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | absltd.1 | |- ( ph -> A e. RR ) | |
| 2 | absltd.2 | |- ( ph -> B e. RR ) | |
| 3 | absltd.3 | |- ( ph -> C e. RR ) | |
| 4 | absdifle | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |