Metamath Proof Explorer


Theorem absdivzi

Description: Absolute value distributes over division. (Contributed by NM, 26-Mar-2005)

Ref Expression
Hypotheses absvalsqi.1
|- A e. CC
abssub.2
|- B e. CC
Assertion absdivzi
|- ( B =/= 0 -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 abssub.2
 |-  B e. CC
3 absdiv
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) )
4 1 2 3 mp3an12
 |-  ( B =/= 0 -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) )