| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( ( abs ` M ) = M -> ( ( abs ` M ) || N <-> M || N ) ) |
| 2 |
1
|
bicomd |
|- ( ( abs ` M ) = M -> ( M || N <-> ( abs ` M ) || N ) ) |
| 3 |
2
|
a1i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = M -> ( M || N <-> ( abs ` M ) || N ) ) ) |
| 4 |
|
negdvdsb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> -u M || N ) ) |
| 5 |
|
breq1 |
|- ( ( abs ` M ) = -u M -> ( ( abs ` M ) || N <-> -u M || N ) ) |
| 6 |
5
|
bicomd |
|- ( ( abs ` M ) = -u M -> ( -u M || N <-> ( abs ` M ) || N ) ) |
| 7 |
4 6
|
sylan9bb |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = -u M ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| 8 |
7
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = -u M -> ( M || N <-> ( abs ` M ) || N ) ) ) |
| 9 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 10 |
9
|
absord |
|- ( M e. ZZ -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
| 11 |
10
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
| 12 |
3 8 11
|
mpjaod |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |