| Step |
Hyp |
Ref |
Expression |
| 1 |
|
replim |
|- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 2 |
1
|
fveq2d |
|- ( A e. CC -> ( exp ` A ) = ( exp ` ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) ) |
| 3 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 4 |
3
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
|
imcl |
|- ( A e. CC -> ( Im ` A ) e. RR ) |
| 7 |
6
|
recnd |
|- ( A e. CC -> ( Im ` A ) e. CC ) |
| 8 |
|
mulcl |
|- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
| 9 |
5 7 8
|
sylancr |
|- ( A e. CC -> ( _i x. ( Im ` A ) ) e. CC ) |
| 10 |
|
efadd |
|- ( ( ( Re ` A ) e. CC /\ ( _i x. ( Im ` A ) ) e. CC ) -> ( exp ` ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) = ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) |
| 11 |
4 9 10
|
syl2anc |
|- ( A e. CC -> ( exp ` ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) = ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) |
| 12 |
2 11
|
eqtrd |
|- ( A e. CC -> ( exp ` A ) = ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) |
| 13 |
12
|
fveq2d |
|- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( abs ` ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) ) |
| 14 |
3
|
reefcld |
|- ( A e. CC -> ( exp ` ( Re ` A ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( A e. CC -> ( exp ` ( Re ` A ) ) e. CC ) |
| 16 |
|
efcl |
|- ( ( _i x. ( Im ` A ) ) e. CC -> ( exp ` ( _i x. ( Im ` A ) ) ) e. CC ) |
| 17 |
9 16
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. ( Im ` A ) ) ) e. CC ) |
| 18 |
15 17
|
absmuld |
|- ( A e. CC -> ( abs ` ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) = ( ( abs ` ( exp ` ( Re ` A ) ) ) x. ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) ) ) |
| 19 |
|
absefi |
|- ( ( Im ` A ) e. RR -> ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) = 1 ) |
| 20 |
6 19
|
syl |
|- ( A e. CC -> ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) = 1 ) |
| 21 |
20
|
oveq2d |
|- ( A e. CC -> ( ( abs ` ( exp ` ( Re ` A ) ) ) x. ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) ) = ( ( abs ` ( exp ` ( Re ` A ) ) ) x. 1 ) ) |
| 22 |
13 18 21
|
3eqtrd |
|- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( ( abs ` ( exp ` ( Re ` A ) ) ) x. 1 ) ) |
| 23 |
15
|
abscld |
|- ( A e. CC -> ( abs ` ( exp ` ( Re ` A ) ) ) e. RR ) |
| 24 |
23
|
recnd |
|- ( A e. CC -> ( abs ` ( exp ` ( Re ` A ) ) ) e. CC ) |
| 25 |
24
|
mulridd |
|- ( A e. CC -> ( ( abs ` ( exp ` ( Re ` A ) ) ) x. 1 ) = ( abs ` ( exp ` ( Re ` A ) ) ) ) |
| 26 |
|
efgt0 |
|- ( ( Re ` A ) e. RR -> 0 < ( exp ` ( Re ` A ) ) ) |
| 27 |
3 26
|
syl |
|- ( A e. CC -> 0 < ( exp ` ( Re ` A ) ) ) |
| 28 |
|
0re |
|- 0 e. RR |
| 29 |
|
ltle |
|- ( ( 0 e. RR /\ ( exp ` ( Re ` A ) ) e. RR ) -> ( 0 < ( exp ` ( Re ` A ) ) -> 0 <_ ( exp ` ( Re ` A ) ) ) ) |
| 30 |
28 14 29
|
sylancr |
|- ( A e. CC -> ( 0 < ( exp ` ( Re ` A ) ) -> 0 <_ ( exp ` ( Re ` A ) ) ) ) |
| 31 |
27 30
|
mpd |
|- ( A e. CC -> 0 <_ ( exp ` ( Re ` A ) ) ) |
| 32 |
14 31
|
absidd |
|- ( A e. CC -> ( abs ` ( exp ` ( Re ` A ) ) ) = ( exp ` ( Re ` A ) ) ) |
| 33 |
22 25 32
|
3eqtrd |
|- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( exp ` ( Re ` A ) ) ) |