Step |
Hyp |
Ref |
Expression |
1 |
|
df-abs |
|- abs = ( x e. CC |-> ( sqrt ` ( x x. ( * ` x ) ) ) ) |
2 |
|
0xr |
|- 0 e. RR* |
3 |
2
|
a1i |
|- ( x e. CC -> 0 e. RR* ) |
4 |
|
pnfxr |
|- +oo e. RR* |
5 |
4
|
a1i |
|- ( x e. CC -> +oo e. RR* ) |
6 |
|
absval |
|- ( x e. CC -> ( abs ` x ) = ( sqrt ` ( x x. ( * ` x ) ) ) ) |
7 |
|
abscl |
|- ( x e. CC -> ( abs ` x ) e. RR ) |
8 |
6 7
|
eqeltrrd |
|- ( x e. CC -> ( sqrt ` ( x x. ( * ` x ) ) ) e. RR ) |
9 |
8
|
rexrd |
|- ( x e. CC -> ( sqrt ` ( x x. ( * ` x ) ) ) e. RR* ) |
10 |
|
cjmulrcl |
|- ( x e. CC -> ( x x. ( * ` x ) ) e. RR ) |
11 |
|
cjmulge0 |
|- ( x e. CC -> 0 <_ ( x x. ( * ` x ) ) ) |
12 |
|
sqrtge0 |
|- ( ( ( x x. ( * ` x ) ) e. RR /\ 0 <_ ( x x. ( * ` x ) ) ) -> 0 <_ ( sqrt ` ( x x. ( * ` x ) ) ) ) |
13 |
10 11 12
|
syl2anc |
|- ( x e. CC -> 0 <_ ( sqrt ` ( x x. ( * ` x ) ) ) ) |
14 |
8
|
ltpnfd |
|- ( x e. CC -> ( sqrt ` ( x x. ( * ` x ) ) ) < +oo ) |
15 |
3 5 9 13 14
|
elicod |
|- ( x e. CC -> ( sqrt ` ( x x. ( * ` x ) ) ) e. ( 0 [,) +oo ) ) |
16 |
1 15
|
fmpti |
|- abs : CC --> ( 0 [,) +oo ) |