| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-his1 | 
							 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							 |-  ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( * ` ( B .ih A ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							hicl | 
							 |-  ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) e. CC )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							 |-  ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) e. CC )  | 
						
						
							| 5 | 
							
								4
							 | 
							abscjd | 
							 |-  ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( * ` ( B .ih A ) ) ) = ( abs ` ( B .ih A ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqtrd | 
							 |-  ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( B .ih A ) ) )  |