Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
3 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
4 |
2 3
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
5 |
1
|
cjred |
|- ( ( A e. RR /\ 0 <_ A ) -> ( * ` A ) = A ) |
6 |
5
|
oveq2d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A x. ( * ` A ) ) = ( A x. A ) ) |
7 |
2
|
sqvald |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A ^ 2 ) = ( A x. A ) ) |
8 |
6 7
|
eqtr4d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A x. ( * ` A ) ) = ( A ^ 2 ) ) |
9 |
8
|
fveq2d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A x. ( * ` A ) ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
10 |
|
sqrtsq |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
11 |
4 9 10
|
3eqtrd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |