Description: A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqrcld.1 | |- ( ph -> A e. RR ) |
|
| resqrcld.2 | |- ( ph -> 0 <_ A ) |
||
| Assertion | absidd | |- ( ph -> ( abs ` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | resqrcld.2 | |- ( ph -> 0 <_ A ) |
|
| 3 | absid | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( abs ` A ) = A ) |