Description: The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | absidm | |- ( A e. CC -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
2 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
3 | absid | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( A e. CC -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |