Step |
Hyp |
Ref |
Expression |
1 |
|
negicn |
|- -u _i e. CC |
2 |
1
|
a1i |
|- ( A e. CC -> -u _i e. CC ) |
3 |
|
id |
|- ( A e. CC -> A e. CC ) |
4 |
2 3
|
mulcld |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
5 |
|
absrele |
|- ( ( -u _i x. A ) e. CC -> ( abs ` ( Re ` ( -u _i x. A ) ) ) <_ ( abs ` ( -u _i x. A ) ) ) |
6 |
4 5
|
syl |
|- ( A e. CC -> ( abs ` ( Re ` ( -u _i x. A ) ) ) <_ ( abs ` ( -u _i x. A ) ) ) |
7 |
|
imre |
|- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |
8 |
7
|
fveq2d |
|- ( A e. CC -> ( abs ` ( Im ` A ) ) = ( abs ` ( Re ` ( -u _i x. A ) ) ) ) |
9 |
|
absmul |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( abs ` ( -u _i x. A ) ) = ( ( abs ` -u _i ) x. ( abs ` A ) ) ) |
10 |
1 9
|
mpan |
|- ( A e. CC -> ( abs ` ( -u _i x. A ) ) = ( ( abs ` -u _i ) x. ( abs ` A ) ) ) |
11 |
|
ax-icn |
|- _i e. CC |
12 |
|
absneg |
|- ( _i e. CC -> ( abs ` -u _i ) = ( abs ` _i ) ) |
13 |
11 12
|
ax-mp |
|- ( abs ` -u _i ) = ( abs ` _i ) |
14 |
|
absi |
|- ( abs ` _i ) = 1 |
15 |
13 14
|
eqtri |
|- ( abs ` -u _i ) = 1 |
16 |
15
|
oveq1i |
|- ( ( abs ` -u _i ) x. ( abs ` A ) ) = ( 1 x. ( abs ` A ) ) |
17 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
18 |
17
|
recnd |
|- ( A e. CC -> ( abs ` A ) e. CC ) |
19 |
18
|
mulid2d |
|- ( A e. CC -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) |
20 |
16 19
|
eqtrid |
|- ( A e. CC -> ( ( abs ` -u _i ) x. ( abs ` A ) ) = ( abs ` A ) ) |
21 |
10 20
|
eqtr2d |
|- ( A e. CC -> ( abs ` A ) = ( abs ` ( -u _i x. A ) ) ) |
22 |
6 8 21
|
3brtr4d |
|- ( A e. CC -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |