Metamath Proof Explorer


Theorem abslei

Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005)

Ref Expression
Hypotheses sqrtthi.1
|- A e. RR
sqr11.1
|- B e. RR
Assertion abslei
|- ( ( abs ` A ) <_ B <-> ( -u B <_ A /\ A <_ B ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 sqr11.1
 |-  B e. RR
3 absle
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( abs ` A ) <_ B <-> ( -u B <_ A /\ A <_ B ) ) )
4 1 2 3 mp2an
 |-  ( ( abs ` A ) <_ B <-> ( -u B <_ A /\ A <_ B ) )