Step |
Hyp |
Ref |
Expression |
1 |
|
absvalsq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
3 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
4 |
3
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
5 |
4
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
6 |
5
|
sqvald |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
7 |
2 6
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
8 |
7
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) / ( abs ` A ) ) ) |
9 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
10 |
9
|
cjcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
11 |
|
abs00 |
|- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
12 |
11
|
necon3bid |
|- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
13 |
12
|
biimpar |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
14 |
9 10 5 13
|
div23d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) |
15 |
5 5 13
|
divcan3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) x. ( abs ` A ) ) / ( abs ` A ) ) = ( abs ` A ) ) |
16 |
8 14 15
|
3eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A / ( abs ` A ) ) x. ( * ` A ) ) = ( abs ` A ) ) |
17 |
16
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( * ` ( abs ` A ) ) ) |
18 |
9 5 13
|
divcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A / ( abs ` A ) ) e. CC ) |
19 |
18 10
|
cjmuld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. ( * ` ( * ` A ) ) ) ) |
20 |
9
|
cjcjd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( * ` A ) ) = A ) |
21 |
20
|
oveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` ( A / ( abs ` A ) ) ) x. ( * ` ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. A ) ) |
22 |
19 21
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. A ) ) |
23 |
4
|
cjred |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) |
24 |
17 22 23
|
3eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` ( A / ( abs ` A ) ) ) x. A ) = ( abs ` A ) ) |
25 |
24 16
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( abs ` A ) + ( abs ` A ) ) ) |
26 |
5
|
2timesd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 2 x. ( abs ` A ) ) = ( ( abs ` A ) + ( abs ` A ) ) ) |
27 |
25 26
|
eqtr4d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( 2 x. ( abs ` A ) ) ) |