| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 2 |
1
|
abscld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) e. RR ) |
| 3 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 4 |
|
relogcl |
|- ( ( abs ` A ) e. RR+ -> ( log ` ( abs ` A ) ) e. RR ) |
| 5 |
3 4
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( abs ` A ) ) e. RR ) |
| 6 |
5
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( abs ` A ) ) e. CC ) |
| 7 |
6
|
abscld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` ( abs ` A ) ) ) e. RR ) |
| 8 |
1
|
imcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 9 |
8
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 10 |
9
|
abscld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) e. RR ) |
| 11 |
7 10
|
readdcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) e. RR ) |
| 12 |
|
pire |
|- _pi e. RR |
| 13 |
12
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> _pi e. RR ) |
| 14 |
7 13
|
readdcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) e. RR ) |
| 15 |
1
|
recld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
| 16 |
15
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
| 17 |
|
ax-icn |
|- _i e. CC |
| 18 |
17
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> _i e. CC ) |
| 19 |
18 9
|
mulcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 20 |
16 19
|
abstrid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) <_ ( ( abs ` ( Re ` ( log ` A ) ) ) + ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 21 |
1
|
replimd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 22 |
21
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) = ( abs ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 23 |
|
relog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
| 24 |
23
|
eqcomd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( abs ` A ) ) = ( Re ` ( log ` A ) ) ) |
| 25 |
24
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` ( abs ` A ) ) ) = ( abs ` ( Re ` ( log ` A ) ) ) ) |
| 26 |
18 9
|
absmuld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( ( abs ` _i ) x. ( abs ` ( Im ` ( log ` A ) ) ) ) ) |
| 27 |
|
absi |
|- ( abs ` _i ) = 1 |
| 28 |
27
|
oveq1i |
|- ( ( abs ` _i ) x. ( abs ` ( Im ` ( log ` A ) ) ) ) = ( 1 x. ( abs ` ( Im ` ( log ` A ) ) ) ) |
| 29 |
10
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) e. CC ) |
| 30 |
29
|
mullidd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 x. ( abs ` ( Im ` ( log ` A ) ) ) ) = ( abs ` ( Im ` ( log ` A ) ) ) ) |
| 31 |
28 30
|
eqtrid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` _i ) x. ( abs ` ( Im ` ( log ` A ) ) ) ) = ( abs ` ( Im ` ( log ` A ) ) ) ) |
| 32 |
26 31
|
eqtr2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) = ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 33 |
25 32
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) = ( ( abs ` ( Re ` ( log ` A ) ) ) + ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 34 |
20 22 33
|
3brtr4d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) ) |
| 35 |
|
abslogimle |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) <_ _pi ) |
| 36 |
10 13 7 35
|
leadd2dd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) ) |
| 37 |
2 11 14 34 36
|
letrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) ) |