Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
2cn |
|- 2 e. CC |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
|
divcan3 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
5 |
2 3 4
|
mp3an23 |
|- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
6 |
1 5
|
syl |
|- ( A e. RR -> ( ( 2 x. A ) / 2 ) = A ) |
7 |
6
|
ad2antlr |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( 2 x. A ) / 2 ) = A ) |
8 |
|
ltle |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) ) |
9 |
8
|
imp |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> B <_ A ) |
10 |
|
abssubge0 |
|- ( ( B e. RR /\ A e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
11 |
10
|
3expa |
|- ( ( ( B e. RR /\ A e. RR ) /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
12 |
9 11
|
syldan |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
13 |
12
|
oveq2d |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( ( A + B ) + ( A - B ) ) ) |
14 |
|
recn |
|- ( B e. RR -> B e. CC ) |
15 |
|
simpr |
|- ( ( B e. CC /\ A e. CC ) -> A e. CC ) |
16 |
|
simpl |
|- ( ( B e. CC /\ A e. CC ) -> B e. CC ) |
17 |
15 16 15
|
ppncand |
|- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
18 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
19 |
18
|
adantl |
|- ( ( B e. CC /\ A e. CC ) -> ( 2 x. A ) = ( A + A ) ) |
20 |
17 19
|
eqtr4d |
|- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
21 |
14 1 20
|
syl2an |
|- ( ( B e. RR /\ A e. RR ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
22 |
21
|
adantr |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
23 |
13 22
|
eqtrd |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( 2 x. A ) ) |
24 |
23
|
oveq1d |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
25 |
|
ltnle |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -. A <_ B ) ) |
26 |
25
|
biimpa |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> -. A <_ B ) |
27 |
26
|
iffalsed |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = A ) |
28 |
7 24 27
|
3eqtr4rd |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
29 |
28
|
ancom1s |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
30 |
|
divcan3 |
|- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
31 |
2 3 30
|
mp3an23 |
|- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
32 |
14 31
|
syl |
|- ( B e. RR -> ( ( 2 x. B ) / 2 ) = B ) |
33 |
32
|
ad2antlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( 2 x. B ) / 2 ) = B ) |
34 |
|
abssuble0 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
35 |
34
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
36 |
35
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( ( A + B ) + ( B - A ) ) ) |
37 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
38 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
39 |
37 38 37
|
ppncand |
|- ( ( A e. CC /\ B e. CC ) -> ( ( B + A ) + ( B - A ) ) = ( B + B ) ) |
40 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
41 |
40
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( B - A ) ) = ( ( B + A ) + ( B - A ) ) ) |
42 |
|
2times |
|- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
43 |
42
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
44 |
39 41 43
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
45 |
1 14 44
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
46 |
45
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
47 |
36 46
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( 2 x. B ) ) |
48 |
47
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
49 |
|
iftrue |
|- ( A <_ B -> if ( A <_ B , B , A ) = B ) |
50 |
49
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , B , A ) = B ) |
51 |
33 48 50
|
3eqtr4rd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
52 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
53 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
54 |
29 51 52 53
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |