| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( A = ( abs ` A ) -> ( A mod B ) = ( ( abs ` A ) mod B ) ) |
| 2 |
1
|
eqcoms |
|- ( ( abs ` A ) = A -> ( A mod B ) = ( ( abs ` A ) mod B ) ) |
| 3 |
2
|
eqeq1d |
|- ( ( abs ` A ) = A -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) |
| 4 |
3
|
a1i |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( abs ` A ) = A -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) ) |
| 5 |
|
negmod0 |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) |
| 6 |
|
oveq1 |
|- ( ( abs ` A ) = -u A -> ( ( abs ` A ) mod B ) = ( -u A mod B ) ) |
| 7 |
6
|
eqeq1d |
|- ( ( abs ` A ) = -u A -> ( ( ( abs ` A ) mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) |
| 8 |
7
|
bibi2d |
|- ( ( abs ` A ) = -u A -> ( ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) <-> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) ) |
| 9 |
5 8
|
syl5ibrcom |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( abs ` A ) = -u A -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) ) |
| 10 |
|
absor |
|- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 11 |
10
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 12 |
4 9 11
|
mpjaod |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) |