Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
2 |
|
nn0re |
|- ( ( M gcd N ) e. NN0 -> ( M gcd N ) e. RR ) |
3 |
|
nn0ge0 |
|- ( ( M gcd N ) e. NN0 -> 0 <_ ( M gcd N ) ) |
4 |
2 3
|
absidd |
|- ( ( M gcd N ) e. NN0 -> ( abs ` ( M gcd N ) ) = ( M gcd N ) ) |
5 |
1 4
|
syl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M gcd N ) ) = ( M gcd N ) ) |
6 |
5
|
oveq2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
7 |
6
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
8 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
9 |
1
|
nn0cnd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. CC ) |
10 |
|
absmul |
|- ( ( K e. CC /\ ( M gcd N ) e. CC ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) |
11 |
8 9 10
|
syl2an |
|- ( ( K e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) |
12 |
11
|
3impb |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) |
13 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
14 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
15 |
|
absmul |
|- ( ( K e. CC /\ M e. CC ) -> ( abs ` ( K x. M ) ) = ( ( abs ` K ) x. ( abs ` M ) ) ) |
16 |
|
absmul |
|- ( ( K e. CC /\ N e. CC ) -> ( abs ` ( K x. N ) ) = ( ( abs ` K ) x. ( abs ` N ) ) ) |
17 |
15 16
|
oveqan12d |
|- ( ( ( K e. CC /\ M e. CC ) /\ ( K e. CC /\ N e. CC ) ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) |
18 |
17
|
3impdi |
|- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) |
19 |
8 13 14 18
|
syl3an |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) |
20 |
|
zmulcl |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
21 |
|
zmulcl |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
22 |
|
gcdabs |
|- ( ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
23 |
20 21 22
|
syl2an |
|- ( ( ( K e. ZZ /\ M e. ZZ ) /\ ( K e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
24 |
23
|
3impdi |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
25 |
|
nn0abscl |
|- ( K e. ZZ -> ( abs ` K ) e. NN0 ) |
26 |
|
zabscl |
|- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
27 |
|
zabscl |
|- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
28 |
|
mulgcd |
|- ( ( ( abs ` K ) e. NN0 /\ ( abs ` M ) e. ZZ /\ ( abs ` N ) e. ZZ ) -> ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
29 |
25 26 27 28
|
syl3an |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
30 |
19 24 29
|
3eqtr3d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
31 |
|
gcdabs |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
32 |
31
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
33 |
32
|
oveq2d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
34 |
30 33
|
eqtrd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
35 |
7 12 34
|
3eqtr4rd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( abs ` ( K x. ( M gcd N ) ) ) ) |