| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) | 
						
							| 2 |  | nn0re |  |-  ( ( M gcd N ) e. NN0 -> ( M gcd N ) e. RR ) | 
						
							| 3 |  | nn0ge0 |  |-  ( ( M gcd N ) e. NN0 -> 0 <_ ( M gcd N ) ) | 
						
							| 4 | 2 3 | absidd |  |-  ( ( M gcd N ) e. NN0 -> ( abs ` ( M gcd N ) ) = ( M gcd N ) ) | 
						
							| 5 | 1 4 | syl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M gcd N ) ) = ( M gcd N ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) | 
						
							| 8 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 9 | 1 | nn0cnd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. CC ) | 
						
							| 10 |  | absmul |  |-  ( ( K e. CC /\ ( M gcd N ) e. CC ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) | 
						
							| 11 | 8 9 10 | syl2an |  |-  ( ( K e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) | 
						
							| 12 | 11 | 3impb |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) | 
						
							| 13 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 14 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 15 |  | absmul |  |-  ( ( K e. CC /\ M e. CC ) -> ( abs ` ( K x. M ) ) = ( ( abs ` K ) x. ( abs ` M ) ) ) | 
						
							| 16 |  | absmul |  |-  ( ( K e. CC /\ N e. CC ) -> ( abs ` ( K x. N ) ) = ( ( abs ` K ) x. ( abs ` N ) ) ) | 
						
							| 17 | 15 16 | oveqan12d |  |-  ( ( ( K e. CC /\ M e. CC ) /\ ( K e. CC /\ N e. CC ) ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) | 
						
							| 18 | 17 | 3impdi |  |-  ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) | 
						
							| 19 | 8 13 14 18 | syl3an |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) | 
						
							| 20 |  | zmulcl |  |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) | 
						
							| 21 |  | zmulcl |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) | 
						
							| 22 |  | gcdabs |  |-  ( ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) | 
						
							| 23 | 20 21 22 | syl2an |  |-  ( ( ( K e. ZZ /\ M e. ZZ ) /\ ( K e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) | 
						
							| 24 | 23 | 3impdi |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) | 
						
							| 25 |  | nn0abscl |  |-  ( K e. ZZ -> ( abs ` K ) e. NN0 ) | 
						
							| 26 |  | zabscl |  |-  ( M e. ZZ -> ( abs ` M ) e. ZZ ) | 
						
							| 27 |  | zabscl |  |-  ( N e. ZZ -> ( abs ` N ) e. ZZ ) | 
						
							| 28 |  | mulgcd |  |-  ( ( ( abs ` K ) e. NN0 /\ ( abs ` M ) e. ZZ /\ ( abs ` N ) e. ZZ ) -> ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) | 
						
							| 29 | 25 26 27 28 | syl3an |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) | 
						
							| 30 | 19 24 29 | 3eqtr3d |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) | 
						
							| 31 |  | gcdabs |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) | 
						
							| 32 | 31 | 3adant1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) | 
						
							| 34 | 30 33 | eqtrd |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) | 
						
							| 35 | 7 12 34 | 3eqtr4rd |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( abs ` ( K x. ( M gcd N ) ) ) ) |