Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 . (Contributed by Andrew Salmon, 30-Jun-2011) (Revised by AV, 24-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | absn | |- ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn | |- { Y } = { x | x = Y } |
|
2 | 1 | eqeq2i | |- ( { x | ph } = { Y } <-> { x | ph } = { x | x = Y } ) |
3 | abbi | |- ( A. x ( ph <-> x = Y ) <-> { x | ph } = { x | x = Y } ) |
|
4 | 2 3 | bitr4i | |- ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) ) |