Metamath Proof Explorer


Theorem absn

Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 . (Contributed by Andrew Salmon, 30-Jun-2011) (Revised by AV, 24-Aug-2022)

Ref Expression
Assertion absn
|- ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) )

Proof

Step Hyp Ref Expression
1 df-sn
 |-  { Y } = { x | x = Y }
2 1 eqeq2i
 |-  ( { x | ph } = { Y } <-> { x | ph } = { x | x = Y } )
3 abbi
 |-  ( A. x ( ph <-> x = Y ) <-> { x | ph } = { x | x = Y } )
4 2 3 bitr4i
 |-  ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) )