| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjneg |
|- ( A e. CC -> ( * ` -u A ) = -u ( * ` A ) ) |
| 2 |
1
|
oveq2d |
|- ( A e. CC -> ( -u A x. ( * ` -u A ) ) = ( -u A x. -u ( * ` A ) ) ) |
| 3 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
| 4 |
|
mul2neg |
|- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( -u A x. -u ( * ` A ) ) = ( A x. ( * ` A ) ) ) |
| 5 |
3 4
|
mpdan |
|- ( A e. CC -> ( -u A x. -u ( * ` A ) ) = ( A x. ( * ` A ) ) ) |
| 6 |
2 5
|
eqtrd |
|- ( A e. CC -> ( -u A x. ( * ` -u A ) ) = ( A x. ( * ` A ) ) ) |
| 7 |
6
|
fveq2d |
|- ( A e. CC -> ( sqrt ` ( -u A x. ( * ` -u A ) ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 8 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 9 |
|
absval |
|- ( -u A e. CC -> ( abs ` -u A ) = ( sqrt ` ( -u A x. ( * ` -u A ) ) ) ) |
| 10 |
8 9
|
syl |
|- ( A e. CC -> ( abs ` -u A ) = ( sqrt ` ( -u A x. ( * ` -u A ) ) ) ) |
| 11 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 12 |
7 10 11
|
3eqtr4d |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |