Metamath Proof Explorer


Theorem absnegi

Description: Absolute value of negative. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis absvalsqi.1
|- A e. CC
Assertion absnegi
|- ( abs ` -u A ) = ( abs ` A )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 absneg
 |-  ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) )
3 1 2 ax-mp
 |-  ( abs ` -u A ) = ( abs ` A )