Metamath Proof Explorer


Theorem absneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006)

Ref Expression
Assertion absneu
|- ( ( A e. V /\ { x | ph } = { A } ) -> E! x ph )

Proof

Step Hyp Ref Expression
1 sneq
 |-  ( y = A -> { y } = { A } )
2 1 eqeq2d
 |-  ( y = A -> ( { x | ph } = { y } <-> { x | ph } = { A } ) )
3 2 spcegv
 |-  ( A e. V -> ( { x | ph } = { A } -> E. y { x | ph } = { y } ) )
4 3 imp
 |-  ( ( A e. V /\ { x | ph } = { A } ) -> E. y { x | ph } = { y } )
5 euabsn2
 |-  ( E! x ph <-> E. y { x | ph } = { y } )
6 4 5 sylibr
 |-  ( ( A e. V /\ { x | ph } = { A } ) -> E! x ph )