Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | absneu | |- ( ( A e. V /\ { x | ph } = { A } ) -> E! x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | |- ( y = A -> { y } = { A } ) |
|
2 | 1 | eqeq2d | |- ( y = A -> ( { x | ph } = { y } <-> { x | ph } = { A } ) ) |
3 | 2 | spcegv | |- ( A e. V -> ( { x | ph } = { A } -> E. y { x | ph } = { y } ) ) |
4 | 3 | imp | |- ( ( A e. V /\ { x | ph } = { A } ) -> E. y { x | ph } = { y } ) |
5 | euabsn2 | |- ( E! x ph <-> E. y { x | ph } = { y } ) |
|
6 | 4 5 | sylibr | |- ( ( A e. V /\ { x | ph } = { A } ) -> E! x ph ) |