| Step |
Hyp |
Ref |
Expression |
| 1 |
|
le0neg1 |
|- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
| 2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 3 |
|
absneg |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
| 4 |
2 3
|
syl |
|- ( A e. RR -> ( abs ` -u A ) = ( abs ` A ) ) |
| 5 |
4
|
adantr |
|- ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = ( abs ` A ) ) |
| 6 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 7 |
|
absid |
|- ( ( -u A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = -u A ) |
| 8 |
6 7
|
sylan |
|- ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = -u A ) |
| 9 |
5 8
|
eqtr3d |
|- ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` A ) = -u A ) |
| 10 |
9
|
ex |
|- ( A e. RR -> ( 0 <_ -u A -> ( abs ` A ) = -u A ) ) |
| 11 |
1 10
|
sylbid |
|- ( A e. RR -> ( A <_ 0 -> ( abs ` A ) = -u A ) ) |
| 12 |
11
|
imp |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |