Metamath Proof Explorer


Theorem absnid

Description: A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion absnid
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A )

Proof

Step Hyp Ref Expression
1 le0neg1
 |-  ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) )
2 recn
 |-  ( A e. RR -> A e. CC )
3 absneg
 |-  ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) )
4 2 3 syl
 |-  ( A e. RR -> ( abs ` -u A ) = ( abs ` A ) )
5 4 adantr
 |-  ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = ( abs ` A ) )
6 renegcl
 |-  ( A e. RR -> -u A e. RR )
7 absid
 |-  ( ( -u A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = -u A )
8 6 7 sylan
 |-  ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = -u A )
9 5 8 eqtr3d
 |-  ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` A ) = -u A )
10 9 ex
 |-  ( A e. RR -> ( 0 <_ -u A -> ( abs ` A ) = -u A ) )
11 1 10 sylbid
 |-  ( A e. RR -> ( A <_ 0 -> ( abs ` A ) = -u A ) )
12 11 imp
 |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A )