Description: A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqrcld.1 | |- ( ph -> A e. RR ) |
|
absnidd.2 | |- ( ph -> A <_ 0 ) |
||
Assertion | absnidd | |- ( ph -> ( abs ` A ) = -u A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrcld.1 | |- ( ph -> A e. RR ) |
|
2 | absnidd.2 | |- ( ph -> A <_ 0 ) |
|
3 | absnid | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( abs ` A ) = -u A ) |