Metamath Proof Explorer


Theorem absnidd

Description: A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1
|- ( ph -> A e. RR )
absnidd.2
|- ( ph -> A <_ 0 )
Assertion absnidd
|- ( ph -> ( abs ` A ) = -u A )

Proof

Step Hyp Ref Expression
1 resqrcld.1
 |-  ( ph -> A e. RR )
2 absnidd.2
 |-  ( ph -> A <_ 0 )
3 absnid
 |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A )
4 1 2 3 syl2anc
 |-  ( ph -> ( abs ` A ) = -u A )