Step |
Hyp |
Ref |
Expression |
1 |
|
absnpncan2d.a |
|- ( ph -> A e. CC ) |
2 |
|
absnpncan2d.b |
|- ( ph -> B e. CC ) |
3 |
|
absnpncan2d.c |
|- ( ph -> C e. CC ) |
4 |
|
absnpncan2d.d |
|- ( ph -> D e. CC ) |
5 |
1 4
|
subcld |
|- ( ph -> ( A - D ) e. CC ) |
6 |
5
|
abscld |
|- ( ph -> ( abs ` ( A - D ) ) e. RR ) |
7 |
1 3
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
8 |
7
|
abscld |
|- ( ph -> ( abs ` ( A - C ) ) e. RR ) |
9 |
3 4
|
subcld |
|- ( ph -> ( C - D ) e. CC ) |
10 |
9
|
abscld |
|- ( ph -> ( abs ` ( C - D ) ) e. RR ) |
11 |
8 10
|
readdcld |
|- ( ph -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - D ) ) ) e. RR ) |
12 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
13 |
12
|
abscld |
|- ( ph -> ( abs ` ( A - B ) ) e. RR ) |
14 |
2 3
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
15 |
14
|
abscld |
|- ( ph -> ( abs ` ( B - C ) ) e. RR ) |
16 |
13 15
|
readdcld |
|- ( ph -> ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) e. RR ) |
17 |
16 10
|
readdcld |
|- ( ph -> ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) e. RR ) |
18 |
1 4 3
|
abs3difd |
|- ( ph -> ( abs ` ( A - D ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - D ) ) ) ) |
19 |
1 3 2
|
abs3difd |
|- ( ph -> ( abs ` ( A - C ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) ) |
20 |
8 16 10 19
|
leadd1dd |
|- ( ph -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - D ) ) ) <_ ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) ) |
21 |
6 11 17 18 20
|
letrd |
|- ( ph -> ( abs ` ( A - D ) ) <_ ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) ) |