Step |
Hyp |
Ref |
Expression |
1 |
|
absnpncan3d.a |
|- ( ph -> A e. CC ) |
2 |
|
absnpncan3d.b |
|- ( ph -> B e. CC ) |
3 |
|
absnpncan3d.c |
|- ( ph -> C e. CC ) |
4 |
|
absnpncan3d.d |
|- ( ph -> D e. CC ) |
5 |
|
absnpncan3d.e |
|- ( ph -> E e. CC ) |
6 |
1 5
|
subcld |
|- ( ph -> ( A - E ) e. CC ) |
7 |
6
|
abscld |
|- ( ph -> ( abs ` ( A - E ) ) e. RR ) |
8 |
1 4
|
subcld |
|- ( ph -> ( A - D ) e. CC ) |
9 |
8
|
abscld |
|- ( ph -> ( abs ` ( A - D ) ) e. RR ) |
10 |
4 5
|
subcld |
|- ( ph -> ( D - E ) e. CC ) |
11 |
10
|
abscld |
|- ( ph -> ( abs ` ( D - E ) ) e. RR ) |
12 |
9 11
|
readdcld |
|- ( ph -> ( ( abs ` ( A - D ) ) + ( abs ` ( D - E ) ) ) e. RR ) |
13 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
14 |
13
|
abscld |
|- ( ph -> ( abs ` ( A - B ) ) e. RR ) |
15 |
2 3
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
16 |
15
|
abscld |
|- ( ph -> ( abs ` ( B - C ) ) e. RR ) |
17 |
14 16
|
readdcld |
|- ( ph -> ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) e. RR ) |
18 |
3 4
|
subcld |
|- ( ph -> ( C - D ) e. CC ) |
19 |
18
|
abscld |
|- ( ph -> ( abs ` ( C - D ) ) e. RR ) |
20 |
17 19
|
readdcld |
|- ( ph -> ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) e. RR ) |
21 |
20 11
|
readdcld |
|- ( ph -> ( ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) + ( abs ` ( D - E ) ) ) e. RR ) |
22 |
1 5 4
|
abs3difd |
|- ( ph -> ( abs ` ( A - E ) ) <_ ( ( abs ` ( A - D ) ) + ( abs ` ( D - E ) ) ) ) |
23 |
1 2 3 4
|
absnpncan2d |
|- ( ph -> ( abs ` ( A - D ) ) <_ ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) ) |
24 |
9 20 11 23
|
leadd1dd |
|- ( ph -> ( ( abs ` ( A - D ) ) + ( abs ` ( D - E ) ) ) <_ ( ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) + ( abs ` ( D - E ) ) ) ) |
25 |
7 12 21 22 24
|
letrd |
|- ( ph -> ( abs ` ( A - E ) ) <_ ( ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) + ( abs ` ( D - E ) ) ) ) |